Assessing productivity and carbon sequestration capacity of Eucalyptus globulus plantations using the process model Forest-DNDC: Calibration and validation

نویسندگان

  • P. Miehle
  • C. Li
چکیده

The tree growth sub-module (PnET) of the mechanistic model Forest-DNDC was calibrated and validated for plantation grown Eucalyptus globulus. Forest-DNDC describes the biogeochemical cycles of C and N and can assist in estimating soil-borne greenhouse gas fluxes. For validation of the forest growth sub-module, data from commercial forest plantations in south-eastern Australia was used. Growth predictions agreed well with growth measurements taken at age 6 years from 28 permanent sample plots, with an average prediction error of −1.62 t C ha−1 (−3.19%). Differences between predicted and measured aboveground C stocks ranged between −23.5 and 12.6 t C ha−1, which amounted to a relative root mean square error in prediction of 17.9%. Correlation between modelled and measured C in standing biomass was good (r2 = 0.73), with a Nash–Sutcliffe coefficient of model efficiency, ME = 0.65. The results obtained from the validation test reveal that Forest-DNDC can predict growth of E. globulus to a high level of precision across a broad range of climatic conditions and soil types. Forest-DNDC performed satisfactorily in comparison to other growth and yield models that have already been calibrated for E. globulus (e.g. BIOMASS, 3-PG, PROMOD or CABALA). In contrast to these growth and yield models, Forest-DNDC can additionally estimate total greenhouse gas budgets. The slightly lower precision of Forest-DNDC in comparison with specific management models, such as CABALA, are compensated for by the simple input requirements and application to regional situations. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation

Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic...

متن کامل

Use of native species to improve carbon sequestration and contribute towards solving the environmental problems of the timberlands in Biscay, northern Spain.

The rapid transformation of natural forest areas into fast-growing exotic species plantations, where the main objective is timber and pulp production, has led to a neglect of other services forests provide in many parts of the world. One example of such a problem is the county of Biscay, where the management of these plantations has negative impacts on the environment, creating the necessity to...

متن کامل

Bhadrachalam Clones of Eucalyptus – An Achievement of ITC

ITC Limited Bhadrachalam Paperboards Division has successfully implemented a major research and development project begun in 1989 with a view to improving the productivity and profitability of plantations and making farm forestry an attractive land use option. The major research and development emphasis has been on genetic improvement of planting stock and improvement in the “package of practic...

متن کامل

Comparison of Carbon and Nitrogen Sequestration in Soils Under Plantations, Natural Forest and Agricultural Farm Land Uses in Arjan Plain in the Fars Province

The carbon sequestaration by plants and soil is one of the easiest and the most econimical ways to reduce atmosphere carbon. This study was conducted on the planted land use of Fraxinus rotundifolia, Cupressus arizonica, obinia pseudoacacia L., Elaeagnus angustifolia, Cedrus libani, and Quercus brantii (persica) in the Arjan plain of Fars province. For each plantation land use, there were three...

متن کامل

A cash flow model to compare coppice and genetically improved seedling options for Eucalyptus globulus pulpwood plantations

Coppice can provide a cheap alternative to replanting in the second rotation in Eucalyptus globulus Labill. plantations. However, replanting with genetically improved stock may provide a more profitable alternative. A discounted cash flow model was used to compare the profitablity of coppice and seedling crops in second rotation E. globulus pulpwood plantations, using incremental net present va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006